

Prime Q-Mastermix

(2X, Real-time PCR with SYBR Green I)

Product Name	Cat. No.	Size
Prime Q-Mastermix (2X)	Q-9200	1.0 ml X 1
Prime Q-Mastermix (2X, with ROX dye)	Q-9210	1.0 ml X 1

Package information

Q-9200	2X Prime Q-Mastermix (1.0 ml X 1) - with HS Prime Taq DNA Polymersae, reaction buffer, enzyme stabilizer, dNTPs mixture, SYBR Green I and PCR enhancer
Q-9210	2X Prime Q-Mastermix (1.0 ml X 1) - with HS Prime Taq DNA Polymersae, reaction buffer, enzyme stabilizer, dNTPs mixture, SYBR Green I and PCR enhancer 50X ROX dye (25 µM, 50 ½ X 1)

Description

Prime Q-Mastermix (Real-time PCR with SYBR Green I) is a 2X premix reagent for real-time PCR by using SYBR Green I dye. This product is contains the HS Prime Taq DNA Polymerase, which is an enzyme for hot-start PCR.

Also Prime Q-Mastermix (Real-time PCR with SYBR Green I) provide as PCR Premix that may be used with any appropriately designed primer to detect any DNA or cDNA sequence.

Usage Information

- A target template is a DNA, cDNA and all nucleotide sequence.
- Consistent results are obtained for amplicon size ranges less than 500 bp.

Protocol

The following $50\,\text{pl}$ reaction volume can be used for detection using SYBR Green I real-time PCR.

1. Program the real-time PCR instrument.

2. Prepare the reaction mixture

2: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Components	Volume	
DNase - free water	add up to 50 μ l	
Upstream Primer (10 pmole, 10 μM)	×μl	
Downstream Primer (10 pmole, 10 µM)	×μl	
[50X ROX dye (Option)]*	[x#l]	
Template DNA	×μl	
Prime Q-Mastermix (2X)	25 <i>µ</i> l	

♣ 50X ROX dye

ROX dye can be included in the reaction to normalize the fluorescent reporter signal, for instruments that are compatible with that option. ROX is supplied at a 25 µM concentration. Use the following table to determine the amount of ROX to use with a particular instrument (per 50 µL reaction volume)

ase with a particular histiannent (per some reaction volume):				
Instrument	Amount of ROX	Final ROX		
mstrument	per 50 ≠ reaction	Concentration		
AB 7000, 7300, 7700,				
7900HT, 7900HT Fast,	1.0(1)	500 nM		
StepOne, and	1.0μl (1X)			
StepOnePlus				
AB 7500, QuantStudio				
Stratagene Mx3000P,	0.1 <i>μ</i> ℓ* (0.1X)	50 nM		
Mx3005P, and Mx4000				

 \bigstar To accurately pipet 0.1 μ l per reaction, we recommend diluting ROX 1:10 immediately before use and use 1 μ l of the dilution.

3. PCR cycling

Chara	Temp. & Time		6.1
Step	Temp.	Time	Cycles
Initial denaturation	95℃	10 min	1
Denaturation	95℃	30~60 sec	
Annealing	50~60℃	30~60 sec	30 ~ 45
Extension	72℃	30~60 sec	

- Research Use Only
- Store at -20℃